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7 Interpreter

A: Today we will write an interpreter.
B: I often heard of interpreters, for example JavaScript interpreter, but I 
don't really know what they are.

A: An interpreter is what executes your programs. All programs in this 
course are executed by a JavaScript interpreter.

B: This looks like the console. I enter an expression and it gives me its 
value.

A: The console contains an interpreter inside, so it is basically an 
interpreter.
B: Is JavaScript an interpreter?

A: No, JavaScript is a programming language. You need to distinguish 
a language and its interpreter. Those are two different things.
B: So JavaScript is a language as English is a language. Can you give 
me an example of an interpreter?

A: For example, node.js is an interpreter. Node.js is a JavaScript 
interpreter. This means that it can execute programs written in the 
JavaScript language.
B: I see. JavaScript is the language and node.js is its interpreter. Are 
there other interpreters of JavaScript?

A: There are many JavaScript interpreters. Anybody can write a 
JavaScript interpreter. Every web browser has a built-in JavaScript 
interpreter, for example Chrome, Safari, Firefox, Internet Explorer.
B: Why do we have so many interpreters for one language?

A: This is like there are many singers of the same song. Each one is 
different and nobody is perfect. Every interpreter author tried to 
improve what they didn't like or doesn't fit their needs, but everybody 
makes mistakes, sometimes new mistakes, so this goes on forever.
B: That's funny.

A: Even big companies like Microsoft make mistakes, over and over. If 
we learn from old mistakes, we won't make the same mistakes again.
B: I should learn from mistakes, either made by myself or by others. 
They are valuable information.



A: I'm glad that you realized this. In case you know what is a CPU, 
CPUs are interpreters too. They are interpreters implemented in 
electronic circuits. They execute machine code.
B: I'm surprised. Interpreters can also be hardware?

A: Yes. Computer hardware circuits are not that different from 
software. Both hardware and software can implement the same logic. I 
hope you can see their connections from this course.
B: This idea is fascinating! I also heard of GPUs. Are GPUs interpreters 
too?

A: GPUs are not that different from CPUs, so they are interpreters too.
B: Interpreter seems to be a very broad concept.

A: Actually we humans are interpreters too. We are interpreters of 
natural languages (English, Japanese etc). We make sense out of words 
and sentences, in a similar way as JavaScript interpreters.
B: It seems to go far beyond computers!

A: If you understand interpreters, you may apply the idea to many 
things, including the design of CPU, GPU, network protocols etc. It is 
fair to say that interpreters are the essence of computer science, 
because "interpret" is a synonym of "compute".
B: That makes a lot of sense.

A: If you know how to write interpreters, you have the ability to 
implement programming languages. You may then design your own 
programming languages. You can also readily understand languages 
designed by others.
B: I'm glad that I'm getting there so soon.

Datatype definitions 

A: Let's get down to earth. In this lesson you will implement an 
interpreter for a very simple but powerful language. It can execute 
most of programs you wrote in Lesson 1 and 2.
B: Good. So we already have lots of test cases for it.

A: Indeed, I made some tests using Lesson 1 functions, for example 
the compose function. You may open the exercise document and use it 
as a reference.

Exercise Set 7

B: Thank you. I opened it.

A: Don't read too much into it yet. Let me explain. 
B: Okay.

https://shimo.im/docs/HAhVbpUY12AmVb3Z


A: You have already implemented an interpreter. The calculator (calc) 
that you wrote in Lesson 5 is also an interpreter. It interprets a very 
simple language of arithmetic expressions, such as 1 + 2 * 3.
B: Yes. We wrote it as binop("+", 1, binop("*", 2 3)).

A: Yes. I wrote it in JavaScript syntax 1 + 2 * 3, but you should 
understand this as binop("+", 1, binop("*", 2 3)) in our own 
language. We will often use JavaScript's syntax to explain things in 
this lesson because otherwise it will be very verbose.
B: I see. Are we going to extend this language in this lesson?

A: That's the plan. Using the same ideas, you will arrive at a more 
powerful language. Arithmetic expressions (expressed by binop) will 
be part of the new language, and the calculator will be part of the new 
interpreter.
B: New language, new interpreter. Languages and interpreters seem 
to grow together.

A: Yes. It is often a good idea to grow a language instead of starting 
from scratch. You are very likely to make mistakes if you throw 
everything away.
B: What's new in the new language?

A: We need to add three constructs–variables, functions and calls.
B: The three pillars of programming languages, as we learned from 
Lesson 1.

A: It's good that you remembered that. Whenever you are lost in 
programming languages, look for those three things and think in 
terms of them. You will often find your way. Now let's start with their 
datatype definitions.
B: Okay.

A: Previously for the calculator, you have defined the binop datatype. 
It enables you to construct arithmetic expressions. You can write 2 * 3 
as binop("*", 2, 3).
B: I also can write 1 + 2 * 3 as binop("+", 1, binop("*", 2, 3)) 
because the binop type can be nested.

A: This time we will create datatypes for variables, functions and 
calls. They are very much like the binop datatype. They can also be 
nested inside each other. For example, you can nest a binop inside a 
function. Maybe you can figure out what this expression means?

fun("x", binop("*", variable("x"), variable("x"))) 

B: It seems equivalent to the JavaScript function x => x * x, but it is in 
our own language constructs. I guess fun is the constructor of 
functions?



A: Right. fun is the constructor of functions. We use fun because 
function is a JavaScript keyword so we can't use it.
B: This is good too. Functions are fun.

A: Can you see that there are variables nested inside the binop 
structure?
B: Yes, I see two variables inside binop("*", variable("x"), 
variable("x")), which means x * x.

A: Notice that we can't write this in the calculator language because it 
doesn't have variables.
B: I can see how the language has grown.

A: Once you have defined the datatypes variable, fun and call, you 
can construct programs like this. We will reuse the binop datatype 
definition from Lesson 5 so you may just copy it.
B: Since binop creates trees, after we have variable, fun and call, are 
we also creating trees?

A: Yes, programs are trees. We call them abstract syntax trees (AST). It 
may be helpful if you draw an AST for this example.

fun("x", binop("*", variable("x"), variable("x"))) 

B: I'll try.

A: Very good. Because trees are recursive data structures, you can 
construct programs of any size.
B: Indeed, trees are simple and powerful structures.

A: Now you may start writing datatype definitions for variable, fun 
and call. They are similar to binop.
B: Okay. I will write variable's constructor first. It takes one parameter 
name which is a string.

function variable(name) 
{ 
  return name; 
} 



A: That's not right. You can't just use the string as the variable.
B: Oh, I thought a variable is just a string.

A: If you just return the string, you won't be able to tell our variables 
from JavaScript strings.
B: It seems even if there is only one member, I still need to return a 
structure. How about this?

function variable(name) 
{ 
  return pair("variable", pair(name, null)); 
} 

A: Correct. The type tag will make it recognizable as a variable. Now 
you may finish the definitions of the type predicate and visitors of 
variable.
B: (Write the rest of the datatype definition of variable, consult the exercise 
set, and send it to the teacher for a check.)

A: Now write the datatype definition of fun. Do you still remember 
how many parts are in a function?
B: A function has two parts–parameters and function body.

A: Right, but in our language a function has only one parameter. This 
is to make things simple.
B: Just one parameter. Wouldn't that be limited?

A: Not really. You may still simulate multiple parameters by nested 
functions, such as x => y => x + y. For example, the compose function 
in Lesson 1 was written as (f, g) => x => f(g(x)). In our language, 
you may write it as f => g => x => f(g(x)). This is more complex, 
but you can still express it.
B: Got it. Whenever we have a multi-parameter function (x, y, ...) 
=> body, we write it as x => y => ... => body 

A: Yes, remember that you need to change the calls too. Where you 
normally write f(2, 3), now you have to write f(2)(3).
B: This style of calls often appear in Lesson 1's exercises. They puzzled 
me a lot, but now I'm used to it.

A: After you understand the interpreter, multi-parameter functions 
are fairly easy to add. Now you may write the datatype definition for 
fun. Its two members should be named "param" and "body".
B: (Write the definition of fun (constructor, type predicate and visitors) and 
send it to the teacher.)

A: Next is the definition for call. Do you remember how many parts 
are in a call?
B: Two. The operator and the operand.



A: Good. You may write the datatype definition of call now. Its two 
members can be named "op" and "arg".
B: (Write the definition of call and send it to the teacher.)

A: Let's do a small exercise. Can you translate the JavaScript function 
x => y => x + y into our language?
B: (Write your answer and send it to the teacher.)

A: Now translate the call (x => y => x + y)(2)(3) into our language. 
You may copy the previous answer because it is part of the call.
B: (Write your answer and send it to the teacher.)

Structure of the interpreter 

A: You are almost done with datatype definitions. Before we get into 
more details, I hope you can have a working interpreter really soon. 
This can motivate you. Let's look at the general structure of the 
interpreter.
B: Okay.

A: One thing that makes the interpreter different from the calculator is 
that the interpreter supports multiple language constructs (variable, 
fun, call, binop), whereas the calculator supports only binop. For this 
reason we need multiple branches in the interpreter. Its structure 
looks like this.

function interp(exp) 
{ 
  if (typeof(exp) == "number") 
  { 
    ... 
  } 
  else if (isVariable(exp)) 
  { 
    ...  
  }  
  else if (isFunction(exp)) 
  {  
    ...  
  }  
  else if (isCall(exp)) 
  {  
    ...  
  }  
  else if (isBinOp(exp)) 
  { 
    ... 
  } 
  else 
  { 
    throw "Illegal expression: " + pairToString(exp); 
  } 
} 

It is not complete code so don't copy it as yet.

B: So we have a branch for each language construct. The last branch 
will report unrecognized expressions.



A: Yes, the structure is quite regular. We also have a branch for literal 
values. Literals are such as 2, 3, "hello", true, false. They each 
represent one specific value in the language. For now it's okay to have 
just numbers. We may want to add other literals later.
B: I see the first branch is for number literals.

A: Like the calculator, the interpreter is a recursive function on trees. 
The parameter exp is the input program (expression). The interpreter 
will compute its value.
B: This input-output pattern of interpreter seems to be exactly the 
same as the calculator.

A: Actually this is not the whole picture, but it helps. First, think about 
this question. What do you return for the first branch, when exp is a 
number?
B: This is similar to the calculator's base case. For that case I just return 
the number itself.

if (typeof(exp) == "number") 
{ 
  return exp; 
} 

A: Correct. Since you noticed that this is also the base case of the 
calculator, maybe it is helpful for you to implement the binop branch 
as the next step.
B: That seems to make a very smooth transition. I can then use the 
interpreter as a calculator even though it is not complete yet.

A: Remember that we are growing from the calculator.
B: Yes.

A: The binop branch should be almost the same as the calc function, 
except that you need to recursively call interp instead of calc.
B: (Finish the binop branch so your interpreter is equivalent to the 
calculator. Test it with simple arithmetic expressions. Send the interpreter to 
the teacher for a check.)

Variables 

A: Very good. Now we can proceed to add other constructs. Let's look 
at the branch for variables. What should we do for this branch?

  else if (isVariable(exp)) 
  { 
    ...  
  } 



B: We should return the variable's value. The value must be stored 
somewhere, but I have no idea where.

A: Actually, I lied about the interpreter's parameters. There is one 
more parameter for the interp function. Its name is env, meaning 
environment. env is a lookup table, but it may also be a BST. It contains 
mappings from variable names to values.

Here is the new framework of interp. You may now add the env 
parameter to your interp function.

function interp(exp, env) 
{ 
  if (typeof(exp) == "number") 
  { 
    ... 
  } 
  else if (isVariable(exp)) 
  { 
    ...  
  }  
    ... 
} 

B: I see. I can just lookup env for the variable's value.

  else if (isVariable(exp)) 
  { 
    return lookupTable(exp, env); 
  }  

A: You are almost there, but env's keys are strings, not variables, so 
you need to get the variable's name first.
B: That's easy to fix.

  else if (isVariable(exp)) 
  { 
    return lookupTable(variableName(exp), env); 
  }  

A: Good. There is one more problem. If the programmer makes a 
mistake, we may have undefined variables in the input program. For 
example we may have (x => x * y)(3). In this case you need to 
report the error.
B: I will change it this way then.

  else if (isVariable(exp)) 
  { 
    var value = lookupTable(variableName(exp), env); 

    if (value == null) 
    { 
      throw "undefined variable: " + variableName(exp); 
    } 
    else 
    { 
      return value; 
    }     
  } 

A: Good. Reporting the variable's name is a good idea. This will help 
the programmer locate the problem.



B: But I'm a little sad because I didn't think of the problem of 
undefined variables. Is there a systematic way of thinking so that I 
won't miss a case like this?

A: The wisdom is, always think about all possibilities of a variables or a 
function's return value. If there are possibilities which you haven't 
checked, the program will go wrong there.
B: That seems to be a good way of thinking. I'll keep that in mind.

A: There is one more thing to change here. We may want to change 
env's data structure later (for example to a BST), so it is better not to 
hardcode lookupTable here. We may abstract this out using abstract 
interfaces.
B: I have used abstracted interfaces, but I'm not sure how to use it for 
this case.

A: Names are the essence of abstraction. You may just define three 
variables like the following. If we ever want to switch to BST, we 
change just three lines. No other code needs to be changed even if you 
used them a thousand times.

var emptyEnv = emptyTable; 
var extEnv = addTable; 
var lookupEnv = lookupTable; 

B: The idea of abstraction is so profound. Now the code of the variable 
branch looks like this.

  else if (isVariable(exp)) 
  { 
    var value = lookupEnv(variableName(exp), env); 

    if (value == null) 
    { 
      throw "Undefined variable: " + variableName(exp); 
    } 
    else 
    { 
      return value; 
    }     
  } 

A: Remember that when you wrote the binop branch, the interp 
function had only one parameter. Now we have two parameters, so 
you should add env to the recursive calls in the binop branch, 
otherwise they will go wrong.
B: I will do that.
(Send your extended interpreter code to the teacher for a quick check.)

Functions 

A: The variable branch is all good now. You may start thinking about 
the function branch. What is the value of a function?
B: From Lesson 1, we learned that the value of a function is the 
function itself, plus some extra information.



A: What's the extra information?
B: When we have a call (x => y => x + y)(2), Chrome's console gives 
us y => x + y, but there is extra information that "x is 2 inside y => x 
+ y".

A: It's good that you remembered this, but we will first pretend that 
the value of a function is just the function itself. This can make the 
transition smoother. Just keep a note that we have something missing 
here.
B: Okay. I just return the function itself for now.

  else if (isFunction(exp)) 
  {  
    return exp;  // something is missing here 
  }  

A: Let's move on to the call branch. After that everything will be 
connected together.
B: Okay.

Calls 

A: Do you remember how calls happen?
B: I remember substitution. In the function body, we replace every 
occurrence of the parameter with the operand. The value of the call is 
then the value of the substituted function body. I remember this 
example from Lesson 1.

A: Good, but substitution takes significant computing time and is 
complex to implement, so our interpreter will use a more practical 
strategy. Instead of substitution, we just recursively call the interp 
function on the function body.
B: You mean, for this example (x => x * x)(3), we recursively call 
interp on the function body x * x?

A: Right. If you draw a picture, it may look like this.



B: That's clear. If we call interp recursively on the function body, and 
we know the value of x, then we can compute the value of the call (x 
=> x * x)(3).

A: That's the idea. The question is how can we find the value of x 
while inside the recursive interp.

B: From the variable branch, I know we get the value of x from env.

A: But how did env contain the value of x? It didn't yet contain the 
value of x when interp sees (x => x * x)(3).
B: Hmm, so we must put the key-value pair x:3 into env somewhere, 
otherwise it just won't happen.

A: Actually, we extend env with the key-value pair x:3 before the 
recursive call of interp on the function body x * x.
B: I see. First we do addTable("x", 3, env). Oh, actually extEnv("x", 
3, env) because we need abstraction.

A: Right. extEnv("x", 3, env) creates a new environment (call it 
newEnv). newEnv contains the value of x, so the recursive call 
interp(funBody(exp), newEnv) knows the value of x.
B: This is my current code.

  else if (isCall(exp)) 
  {  
    var newEnv = extEnv(funParam(callOp(exp)), callArg(exp), 
env); 
    return interp(funBody(callOp(exp)), newEnv); 
  }  

A: This is not right yet. Can you really call funBody on the operator 
callOp(exp)? Is the operator a function?
B: Isn't the operator a function?

A: It may not be. For example f(3), which is call(variable("f"), 3) 
in our language. The operator is variable("f"), which is a variable, 
not a fun!
B: This is interesting. We habitually say that f is a function, but 
actually f is just a variable!



A: Right. You are confused because of the imprecise way of describing 
things in natural languages and math. Now with programming 
languages, we have to be very accurate, otherwise things won't work.
B: Somebody said that programming is just another name for the lost 
art of thinking. Now I seems to understand it.

A: Very good. Actually for the call branch, you need to first evaluate 
both the operator and the operand. Otherwise you can't even ask if 
the operator is a function.
B: Got it. When exp is f(3), we must first evaluate the operator f by a 
recursive call to interp. The recursive interp will lookup the value of 
the variable f in env. We need the same thing for the operand.

  else if (isCall(exp)) 
  {  
    var op = interp(callOp(exp), env); 
    var arg = interp(callArg(exp), env); 
    var newEnv = extEnv(funParam(op), arg, env); 
    return interp(funBody(op), newEnv); 
  }  

A: You forgot to check whether op is a function. The programmer may 
make a mistake. He may have written 2(3). In this case you have to 
report the error "Calling non-function: 2".
B: Oh, old mistake again. I should always consider all possibilities.

  else if (isCall(exp)) 
  {  
    var op = interp(callOp(exp), env); 
    var arg = interp(callArg(exp), env); 

    if (isFunction(op)) 
    { 
      var newEnv = extEnv(funParam(op), arg, env); 
      return interp(funBody(op), newEnv); 
    } 
    else 
    { 
      throw "Calling non-function: " + pairToString(op); 
    } 
  }  

A: This is much better. You are almost there, but there is still 
something wrong in the call and fun branch.
B: I guess we need to talk about the missing information in the 
function branch?

A: Yes. Let's talk about the example (x => y => x + y)(2) as you have 
seen in Lesson 1. Translate (x => y => x + y)(2)(3) into our 
language and run it with interp. Can you get the correct result 5?
B: No, it complains that the variable x is undefined.
(Show that this happens to your teacher.)

A: The error message came from the variable branch. When interp 
sees the inner function's body x + y, is x's value 2?
B: I think so, because when it sees (x => y => x + y)(2), the call 
branch has put the key-value pair x:2 into env, and it's called newEnv.



A: But newEnv is passed to the recursive call, so it is only visible inside 
the function body of x => y => x + y, which is y => x + y. When the 
recursive call returns, the original env doesn't contain x's value.
B: You mean env doesn't contain x's value when we see (x => y => x 
+ y)(2)(3)?

A: Right. You can draw a picture of the environments. Each nested 
expression may have a different environment.
B: I tried, but I have trouble about the yellow one. The green one is 
created when we evaluate (x => y => x + y)(2) and it contains x:2. 
I'm not sure about the yellow one.

A: The yellow environment is actually the same as the red one. 
Remember that we evaluate (x => y => x + y)(2) as the operator 
part of (x => y => x + y)(2)(3). When we evaluate the operator and 
the operand, we use env without extend it.
B: I see. This is the new picture.

A: Any way, only the green environment contains x:2. When we 
evaluate the outermost call (x => y => x + y)(2)(3), we can't see x:2 
because the red environment is empty.
B: What can we do about this? Can we do a substitution and create y 
=> 2 + y?

A: No. As I said, we don't do substitutions in this interpreter. 
B: Then I have no idea.

A: Here is a way. When interp sees a function, it can bundle the 
function and the current environment together, forming a so-called 
closure.
B: What does a closure look like?



A: For this example, the closure will contain the function y => x + y 
and the green environment.
B: I see. The green environment contains x:2. But I'm still not sure 
what to do.

A: You need to define a new datatype closure. It has two members 
"fun" and "env", so the visitors will be called closureFun and 
closureEnv.
B: (Write the definition of closure datatype and show it to the teacher.)

A: After you have the closure datatype, the function branch will just 
be like this:

  else if (isFunction(exp)) 
  { 
    return closure(exp, env); 
  } 

B: That's simple.

A: There is one more change you need for the call branch. For the call, 
we no longer get a function when evaluating the operator. We get a 
closure instead.
B: What do we do with the closure?

A: Do you remember why we have the closure?
B: To access the information in the green environment.

A: We use this environment so that we can know the variables' values 
when the function was created.
B: For example, x as in y => x + y?

A: Yes. We call x a free variable because it is not a parameter of this 
function. Its value came from outside of the function.
B: I see, free variable.

A: So in the recursive call of interp on the function body, we don't use 
the env parameter. We use the environment stored in the closure.
B: You mean something like this?

  else if (isCall(exp)) 
  {  
    var op = interp(callOp(exp), env); 
    var arg = interp(callArg(exp), env); 

    if (isClosure(op)) 
    { 
      var f = closureFun(op); 
      var newEnv = extEnv(funParam(f), arg, closureEnv(op)); 
      return interp(funBody(f), newEnv); 
    } 
    else 
    { 
      throw "Calling non-function"; 



    } 
  }  

A: Correct.
B: That feels strange. Won't I miss any useful information in the 
current env?

A: You won't miss anything because the function is not created here. It 
is created where we could see the green environment.
B: I see. So it makes sense to bundle the environment at the moment 
where the function is created.

A: Yes. This will solve all our problems.
B: Nice.

A: This is all I will teach you about interpreters. There are some 
extensions to the interpreter which I left as exercises. They will deepen 
your understanding of interpreters. If you have questions, just let me 
know. (Exercise Set 7)
B: Thank you!

(Exercise omitted for the sample.)
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