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5 Calculator

A: How was the tree exercises?
B: They are just slightly different from the list exercises.

A: That is good. Their close relationship can help you understand the 
ideas.
B: In the trees of previous lesson, we can't have data members in the 
internal nodes. Can we have them in this lesson?

A: Yes, we will put some data members in the internal nodes. We will 
make something interesting out of this.
B: What is that?

A: Actually, you have already seen trees with data members in the 
internal nodes before.
B: Really? I don't recall anything like that.

A: How about this one?

B: Oh, that looks like the computation graph we learned in the first 
lesson, except that it is upside-down.

A: It is the computation graph. Does the orientation matter at all?
B: No. We have drawn trees upside-down in the previous lesson. It 
doesn't matter in what direction we draw it. It is still the same thing.

A: This is a tree with two data members "+" and "*" in the internal 
nodes.
B: Are "+" and "*" strings?



A: Yes. The operators "+" and "*" are represented as strings here. It is 
not necessary to represent operators as strings, but for simplicity we 
just use strings here.
B: We just put operators in the internal nodes, and the tree becomes a 
computation graph. Baby steps can go a long way.

A: Yes. Can you see how we can construction this tree, the 
computation graph?
B: Previously we used pairs as internal nodes. If we use pairs, we have 
no place to store the data members, so I guess we need something 
larger.

A: Instead of simple pairs, we can use lists as internal nodes, then we 
can have data members in the internal nodes.
B: That makes sense.

A: The internal nodes can be as simple as pair("*", pair(2, pair(3, 
null))).
B: Then the whole computation graph of 1 + 2 * 3 can be written as 
pair("+", pair(1, pair(pair("*", pair(2, pair(3, null))), 
null)))?

A: Right. But this is hard to read.
B: Yes, it will be even harder with complex expressions.

A: We can apply the idea of abstract data type again. We call this data 
type binop, which means "binary operation". A binop contains three 
members, an operator and two operands. The two operands can be 
binop themselves.
B: Why didn't we use abstract data type for the trees of last lesson?

A: That is a good question. Because our pairs happen to create trees, 
we didn't bother to create an abstract data type for those trees. But this 
time it is a bit different. We can no longer use pairs as internal nodes.
B: I see. Because pair("+", pair(1, pair(pair("*", pair(2, pair(3, 
null))), null))) is too complex and error-prone. We need to abstract 
those details out.

A: Right. Let's look at the abstract interfaces of binop one by one then. 
First, the constructor. Think about this, what should the constructor of 
binop create?
B: It should return a list containing three members, an operator and 
two operands. The operands can be binop's themselves.

A: Correct. Our first attempt is something like this:

function binop(op, e1, e2) 
{ 
  return pair(op, pair(e1, pair(e2, null))): 
} 



B: We just put the three members into a list.

A: But if we just write the constructor this way, then we would have 
trouble distinguishing binop from other kinds of lists.
B: Why do we need to distinguish them?

A: For example, when you write a recursive function on a 
computation graph, you will need to ask whether the input is an 
internal node (binop) or not.
B: How can we tell binop from other kinds of lists?

A: For this purpose, we can put a special string member "binop" into 
the list, like this.

function binop(op, e1, e2) 
{ 
  return pair("binop", pair(op, pair(e1, pair(e2, null)))); 
} 

Whenever the first member is the string "binop", we think this list is a 
binop. This is like putting tags on things. We call this string a type tag.
B: What if there are people who happen to create a list with such a tag, 
but they don't mean the same thing?

A: This method is not for reliable prevention of accidents. It is just 
demonstrating a general idea how we distinguish data types. We just 
put some special tag in there, just like we put tags on products in a 
store.
B: That sounds like a good idea, inspired by everyday life.

A: Actually type tags are not necessarily strings. They can be any value 
as long as it is unlikely some other people come up with the same 
value.
B: I could think of a better type tag, such as "binop$62A4#E91".

A: Good. Actually you may generate a random number which is very 
unlikely to be used by other people. That will be much more reliable. 
But for demo purposes we don't use complex schemes.
B: Okay. It is good to have ideas first, and refinements can come later.

A: So we have our constructor for binop. Can you come up with the 
type predicate and visitors yourself? You can call the type predicate 
isBinOp and the visitors binopOp, binopE1 and binopE2.
B: (Write your answers and send them to the teacher.)

A: Well done. After having the binop node structure, we can use it to 
construct our previous examples for 2 * 3 and 1 + 2 * 3. You may 
find how much clearer they are. If you are not sure, take a look at the 
following picture and see where are the binop structures.
B: (Write your answers and send them to the teacher.)



A: Good. Now we can think about what we can do with the 
computation graphs constructed with binop.
B: From the first lesson, we know that we can compute their values. 
That is, to evaluate them.

A: Evaluation of computation graphs is our final goal, but first let's do 
something simpler than that. We build some small utility functions 
which can make binop more convenient to use.
B: What are the utility functions?

A: First of all, computation graphs constructed by binop is still not 
easy to read. It is better if we can display them as usual math 
expressions such as 2 * 3 and 1 + 2 * 3. We call these infix notations 
because the operator * and + are placed in the middle of the two 
operands.
B: That seems to be a nice thing to have.

A: We call this function toInfix. Using our abstract data type, you can 
proceed to Exercise Set 5 and work out toInfix. To avoid the problem 
of operator precedence, we put parentheses around all subexpressions, 
so we have (2 * 3) and (1 + (2 * 3)).
B: (Write your answer to toInfix and send them to the teacher.)

A: Now we have a function that can display the binop structure as an 
usual math expression. With this example, I hope you see the 
difference between computation graphs and text expressions.
B: We have talked about this in the first lesson. Now I can see that 
they are really different things. binop("*", 2, 3) constructs the 
computation graph, and toInfix function converts it into a text 
expression "2 * 3".

A: The computation graph is structural, which has a clear structure. It 
is easy to extract its parts with visitor functions (binopOp, binopE1 and 
binopE2). After it is transformed into text by toInfix, it is much harder 
to get the parts out in a meaningful way.
B: I can see that the string is just a series of characters with no clear 
division of structure. For the expression (1 + (2 * 3)), it is quite hard 
to extract the two operands 1 and (2 * 3) even with the parentheses. 
The computer only sees the sequence of characters (, 1, +, (, 2, *, 3, ), 
and ).

A: We use toInfix only for displaying the computation graph to 
humans. Inside computer programs we almost never use the text 
format. So be sure not to use toInfix unless you need to display on 
the screen.
B: Got it.



A: There is a meaningful (but difficult) way to extract parts from text 
expressions. You can transform the string back into a graph by using a 
parser. A parser is a function which transforms a text expression into a 
computation graph.
B: So a parser is like the inverse function of toInfix? Can we write a 
parser?

A: Yes, the parser and toInfix are the mutual inverse functions. We 
don't write a parser now. Parsers are complex and difficult functions 
to write. It is better you finish all the exercises of this lesson before 
attempting to write a parser. I will give you a parser exercise if you do 
well in this lesson.
B: That is nice!

A: Next we write a function similar to toInfix, except that it produces 
prefix notations. If the infix notation is (2 * 3), then the prefix notation 
is (* 2 3). If the infix notation is (1 + (2 * 3)), then the prefix 
notation is (+ 1 (* 2 3)). You see what is going on?
B: Yes. The prefix notation just puts the operator before the two 
operands.

A: We call this function toPrefix. This is also in Exercise Set 5. You can 
do it now.
B: (Write your answer to toPrefix and send them to the teacher.)

A: Okay. Two warm-up exercises done, we can proceed to write the 
calculator.
B: Great!

A: The calculator (calc) is a function from computation graphs to 
values. It belongs to a general category of functions called interpreters. 
You can think of the calculator as an interpreter for a simple language 
with only arithmetic expressions, like 2 * 3 and 1 + 2 * 3.

B: I have heard of interpreters before, such as the "JavaScript 
interpreter".

A: Interpreters are functions that execute your programs. A JavaScript 
interpreter can execute programs written in the JavaScript language. 
There are multiple implementations of JavaScript interpreter. For 
example, the JavaScript interpreter we use for this course is called 
node.js.



B: I see. So calc is also an interpreter, except that it runs programs 
written in a much smaller language, just arithmetic expressions.

A: Right. We will extend this small interpreter to something bigger 
and more interesting in the next few lessons.
B: Nice.

A: Now we start to write the calc function. It is quite easy. It is just a 
little different from a function you wrote in the last lesson.
B: Which function?

A: treeSum. The calc function is very much like treeSum.
B: How are they similar?

A: Think about this, the treeSum function just sums up all the numbers 
in a tree. This is as if you have a computation graph where all the 
internal nodes have the operator "+". Compare the following two 
computation graphs.

B: I see, treeSum only do additions, so we don't need operators in the 
internal nodes. For general arithmetic expressions, every internal 
node may have a different operator, so we need to do different 
computations depending on the operator.

A: That is a crucial observation. I believe you can figure out what to 
do given this similarity.
B: (Write your answer to calc and send them to the teacher.)

(Exercise omitted for the sample.)
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