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2 Recursion

A: How was the exercises?
B: They are hard, but interesting!

A: Don't feel frustrated. They are just warm-ups. The following 
exercises may be easier.
B: They are like fun puzzles. I sweated, but not frustrated.

A: Good warm-ups. Today we will proceed towards the concept of 
recursion, which is very important to computer science and math.
B: I heard of recursion, but never really learned it.

A: Recursion is a deep topic. Few programmers learned recursion in 
its full strength. Having been using it for many years, I still 
occasionally have new discoveries of recursion.
B: That sounds profound.

A: Don't worry. We will digest it in small pieces.
B: Good.

Boolean and string data types 

A: To introduce recursion, we will first introduce a new concept called 
conditional branch, or just branch. But conditional branch depends on a 
new data type called boolean, so we will look at boolean first.
B: It seems that there is a dependency boolean -> conditional branch -> 
recursion. But first may I ask, what is a data type?

A: Let me explain this with examples. For example, number is a data 
type. We used numbers in the first lesson. The expressions 2, 3, 2 * 3, 
1 + 2 * 3, ... Their values are all numbers.
B: Right.

A: We call those expressions 2, 3, 2 * 3, 1 + 2 * 3, ... number typed 
expressions.
B: Because their values are numbers?

A: Right. Is square(3) is also a number typed expression.
B: Yes, because the value of square(3) is 9, which is a number.

A: Excellent. You may think of the data type number as a bag 
containing all numbers.



B: I saw this kind of picture before. It looks like a set in math.

A: It seems that you have learned the concept set. Yes, you may think 
of a data type as a set.
B: But I didn't learn much about sets. Actually I forgot most of it.

A: Don't worry. Think about the concept "clothing", which includes all 
kinds of clothes. You may think of clothing as a set. Similarly, when we 
talk about "humans", we mean the set containing you, me and all 
other people. Human is also a set.
B: A set feels like a bag of things.

A: Yes, but this "bag" is not physical. It does not physically contain 
things. It is something abstract. It lives in our head.
B: Now I have a better understanding of the word abstract.

A: To get a feel of the data type boolean, try this expression

2 > 3 

B: I got false from console.

A: 2 > 3 is false, right?
B: Right. 2 > 3 is not true.

A: Try 2 < 3 then.
B: It says true, because 2 < 3 is truth.

A: 2 > 3 and 2 < 3 are called comparison expressions because they 
compare two values. The value of comparison expressions are either 
true or false.
B: I noticed that 2 > 3 and 2 < 3 look very much like 2 * 3. There are 
2 and 3, and an operator (>, < or *) in the middle.

A: Good observation. Actually there is not much difference between >, 
< and *. We call >, < and * binary operators because they have two 
inputs. The difference is that the outputs of * are numbers, but the 
outputs of > and < are booleans. We also have +, -, / etc. They are all 
binary operators.
B: Are there other comparison expressions?

A: Yes. You may try these:

2 <= 3  // 2 is less or equal to 3 
2 >= 2  // 2 is greater or equal to 2 
3 == 3  // 3 is equal to 3 
2 != 3  // 2 is not equal to 3 
2 * 3 == 6 // 2 * 3 is equal to 6 
3 == 4 - 1 // 3 is equal to 4 - 1 

var y = 2 * 3; 
y < 8  // y is less than 8 



B: What are those double slashes // ?

A: The characters after the double slash // are called comments. 
JavaScript will ignore whatever you write after // until end of the line, 
so you can write additional information there to explain the code.
B: For in-class experiments, do I just type the parts that are not 
comments?

A: Yes. You may read the comments, but you don't need to type them 
into console. Now try them and let me know what are the values of 
those comparison expressions.
B: They are either true or false.

A: Here true and false are called boolean values. They are values of 
the boolean data type. We call true, false, 2 < 3, 3 == 3 etc. boolean 
typed expressions.
B: Why do we write == for equality? Why not just =?

A: This is because the single equal sign = has already been used for 
variable definitions, for example var x = 2 * 3, so we have to use 
some other symbol for equality. JavaScript chose to use ==, so did 
many other languages.
B: I see. = and == look quite similar.

A: Yes, so you must be very careful. Never write = when you mean ==, 
otherwise you may cause dangerous bugs (computer term for 
mistakes).
B: What bugs can this cause?

A: It is better to think about this yourself and let me know your 
thoughts.
B: (Discuss with your teacher about this.)

A: There are no other values in the boolean data type, except true and 
false.
B: That sounds reasonable, because a comparison is either true or 
false.

A: Actually we can say "boolean type" for short of boolean data type. 
Can you draw a picture of the boolean type, similar to the picture of 
the number type?
B: Here it is, a bag containing just true and false.



A: Very good. Boolean is essential for conditional branches. That is 
why I introduce them first.
B: What is a conditional branch?

A: Let me show you by example. The following abs function can 
compute the absolute value of the input x. Its function body contains a 
conditional branch statement, marked in orange.

function abs(x) 
{ 
  if (x < 0) 
  { 
    return -x; 
  } 
  else 
  { 
    return x; 
  } 
} 

B: I can see that.

A: You may think of the orange part in English: "If (x is less than 0), 
then {the value of abs(x) is -x}, otherwise {the value of abs(x) is x}."
B: That makes more sense now. It is not very different from English.

A: Constructs in programming languages are very similar to natural 
languages. Programming languages are just more precise in syntax.
B: All languages are similar. Some are more precise than others.

A: Right. Depending on whether x < 0 is true or false, this conditional 
branch statement may execute either return -x or return x, but not 
both.
B: Only one branch is executed?

A: Yes. It is like branches of a river. A boat can go down only one of 
the branches, never both.

B: That is clear. The condition is how we decide which branch to take?

A: Correct. The general form of a conditional branch is like this:

if (condition) 
{ 



  // code to be executed when condition is true 
} 
else 
{ 
  // code to be executed when condition is false 
} 

Here condition must be a boolean typed expression.
B: Like x < 0, 2 >= 3, t == 2 * 3 etc?

A: Right. This is why I told you about the boolean type.
B: Now these are connected.

A: We use the value of the condition to decide which way to go, so the 
condition must be evaluated before we take one of the branches.
B: There seems to be an order of evaluation. Some expressions must be 
evaluated before others.

A: Yes. We have a similar evaluation order in the variable definition 
var x = 2 * 3;, where 2 * 3 must be evaluated before we create the 
variable x.
B: I also remember that we must first evaluate the operands of a 
function call.

A: Right. We will reinforce your understanding of evaluation order 
later, so don't worry if you can't remember them now.
B: Okay.

A: You can create functions that return boolean values too. For 
example, you can define a function which will return true if the input 
temperature (temp) is over 30 celsius.

function hot(temp) 
{ 
  return temp > 30; 
} 

B: That is understandable, because temp > 30 is similar to temp * 2, 
which is just a normal value, so we can use it as output. Can I write 
something like if (hot(42)) { ... } else { ... } ?

A: Yes. The condition can be any boolean typed expression, including 
hot(42).
B: This is like standardized machines. I put smaller components 
together to make bigger components.

A: Yes. This way of building things by combining smaller pieces is 
called modular design. You don't take apart the components after they 
are built. You just put them together.
B: This is like building cars or airplanes.

A: Exactly the same idea, very clever! Now we go on. We will write a 
bigger function with three branches in it. This function sign will 
return the sign of its input number. For example:



sign(-4) returns -1
sign(4) returns 1
sign(19) returns 1
sign(-28) returns -1
sign(0) returns 0

Can you see the pattern?
B: sign returns -1 for negative numbers, 0 for zero, and 1 for positive 
numbers.

A: Yes. Now write this function using conditional branches.
B: I have some trouble here

function sign(x) 
{ 
  if (x < 0) 
  { 
    return -1; 
  } 
  else 
  { 
    // ... 
  } 
} 

The conditional branch statement can have only two branches, but 
here we have three cases: negative, zero and positive.

A: Here is a hint: you may have another conditional statement inside 
the branches of a conditional statement. For example, you may put it 
into the else branch.

B: Nice. A branch of a river can have branches too. This means I can 
write this?

function sign(x) 
{ 
  if (x < 0) 
  { 
    return -1; 
  } 
  else 
  { 
    if (x == 0) 
    { 



      return 0; 
    } 
    else 
    { 
      return 1 
    } 
  } 
} 

A: Excellent. When you write a conditional statement inside a branch, 
you get three branches.
B: Yes. One of the outer branch is split into two, thus totally three 
branches.

A: But this way of writing three branches looks complicated. When 
we have many branches the code will be hard to read.
B: Are there clearer ways?

A: There is a special syntax rule which we may use here. The rule is 
that whenever you have an if immediately inside the else branch, you 
may omit the braces for the else branch.

For example, in the above code you may delete these braces (marked).

  if (x < 0) 
  { 
    return -1; 
  } 
  else 
  { 
    if (x == 0) // branch immediately inside else 
    { 
      return 0; 
    } 
    else 
    { 
      return 1 
    } 
  } 

After that, you may put the second if next to the else, so it looks like 
"else if".

  if (x < 0) 
  { 
    return -1; 
  } 
  else if (x == 0) 
  { 
    return 0; 
  } 
  else 
  { 
    return 1 
  } 

B: Indeed that looks prettier, and it is clear that we have three 
branches.

A: But remember that this simplification requires that no other code 
goes between else and if, otherwise you have to write the braces.
B: Got it.



A: So we have finished learning conditional branches.
B: There are four basic building blocks now. Variable, function, call and 
conditional branch.

A: Yes. Just four of them. Now we proceed and use them to write 
programs that were not possible before.
B: Exciting!

fact: a recursive function 

A: Remember that our main topic today is recursion, so we proceed to 
write our first recursive function.
B: Okay.

A: Do you know the factorial function?
B: I learned factorial in math class, sort of.

A: Don't worry. I will show you by example:

The factorial of 5 is 5 * 4 * 3 * 2 * 1.
The factorial of 4 is        4 * 3 * 2 * 1.
The factorial of 3 is                3 * 2 * 1.
And so on...

B: I see it now. The factorial of n is the product of every number from 1 
to n. It is written as n! in math, so 5! means 5 * 4 * 3 * 2 * 1.

A: Notice that n! is in math language. In JavaScript n! is written as 
fact(n), which is a function call.
B: Can I think of math's factorial operator ! as a function with one 
parameter.

A: That is exactly what it is. If ! were a variable name in JavaScript, 
then we would write n! as !(n). Unfortunately we can't use ! as a 
variable name in JavaScript, so we write fact(n) instead.
B: I think fact(n) looks better than n! or !(n) because I can 
immediately know that it is a function call.

A: I think so too. With this preparation, now we will write a function 
which computes the factorial of n. It should be something like this:

function fact(n) 
{ 
  // TODO 
} 

Don't write it yet. I will first give you some guidance.
B: Okay.

A: Written as math, we know that



5! = 5 * 4 * 3 * 2 * 1
4! =      4 * 3 * 2 * 1

Is it true that 5! = 5 * 4! ?
B: Yes.

A: Is it true that 4! = 4 * 3! ?
B: Yes.

A: Is it true that n! = n * (n - 1)! for any natural number n?
B: Yes.

A: Notice that when we say natural numbers, we include zero. How 
about zero?
B: Ah, I was wrong. For zero we can't have n! = n * (n - 1)! because 
then (n - 1)! would be (-1)!. Factorial is not meaningful for negative 
numbers.

A: What is the value of 0! then?
B: Zero?

A: Actually 0! is defined to be 1 in math.
B: Oh? How can 0! be 1?

A: This is for simplicity. If we define 0! as 1, then we can have 1! = 1 * 
0!, which is in the form n! = n * (n - 1)!. This can simplify our 
reasoning.
B: I don't see how it is simpler.

A: Think about it this way:

1. For zero, we have 0! = 1.
2. For any number except zero, we have n! = n * (n - 1)!.

If we defined 0! as 0, then we need one more special case for 1 here.

B: I see. If we define 0! as 1, then we have just two cases to think 
about.

A: We can use a conditional statement to represent the above two 
cases.
B: Two branches, two cases.

A: Right. Can you translate the above math definition of factorial into 
JavaScript?
B: Here it is



function fact(n) 
{ 
  if (n == 0) 
  { 
    return 1; 
  } 
  else 
  { 
    return n! = n * (n - 1)!; 
  } 
} 

A: That is not right. "We have n! = n * (n - 1)!" doesn't mean that you 
just write return n! = n * (n - 1)!. Do you see the problem?
B: Oh, I forgot. n! is math's language. In JavaScript we write fact(n) 
for n!, so (n - 1)! should be written as fact(n - 1). The last line should 
be

return fact(n) = n * fact(n - 1); 

A: This is still not correct. Remember that after the return, you should 
write an expression that is the output value of the function, but fact(n) 
= fact(n - 1) is not even a valid expression in our language. It is a 
syntax error.

Think about this carefully. What should be fact(n)'s output in the 
recursive case?
B: return n * fact(n - 1).

A: Right. Don't be misled by math's language. Now write the function 
in full.
B: Here it is.

function fact(n) 
{ 
  if (n == 0) 
  { 
    return 1; 
  } 
  else 
  { 
    return n * fact(n - 1); 
  } 
} 

A: Correct.

Anatomy of a recursive function 

A: Take a careful look at fact. How is it different from the functions in 
Lesson 1?
B: It calls itself inside its own function body, like a cat chasing its own 
tail.



A: Nice analogy. The concept "calling oneself" is what we call 
recursion. We call fact a recursive functions, and the call fact(n - 1) a 
recursive call. Take a look at this picture.

B: One picture is worth more than a thousand words.

A: The branch without recursive call is called a base case. Here fact has 
one base case (n == 0), but other functions may have more than one 
base cases.
B: What do you call the branches with recursive calls?

A: They are called recursive cases.
B: I can see a recursive case in the picture. Must we have both a base 
case and a recursive case in a recursive function?

A: Yes. A base case is where the function stops calling itself, so you 
must have at least one base case, otherwise the function will keep 
calling itself and go into infinite loops.
B: Can we demonstrate how this could happen?

A: Yes, you can. Try deleting the base case of fact, leaving only the 
recursive case. Then do substitutions repeatedly on fact(5).
B: The erroneous fact function looks like this:

function fact(n) 
{ 
  return n * fact(n - 1); 
} 

(Write your substitution of fact(5) using the erroneous definition, and send 
it to the teacher.)

A: Now you can clearly see that you must have a base case.
B: Yes.

The evaluation process of fact(5) 

A: Let's take a closer look at the process when we evaluate a call to 
fact. We use a small example fact(3). Always use small examples just 
enough to show the ideas, because complex examples often confuse 
us.



B: Also they are more work to do.

A: You may use our old friend substitution for this. First do a 
substitution of fact(3). Of course this time we use the correct 
definition of fact.
B: Like this?

if (3 == 0) 
{ 
  return 1; 
} 
else 
{ 
  return 3 * fact(3 - 1); 
} 

A: For our purpose, you may further reduce this. For example, here 3 
== 0 must be false, so you can just go to the else branch and have 3 * 
fact(3 - 1). Because you know 3 - 1 is 2, you can reduce the whole 
thing to

3 * fact(2) 

This simple form will aid our thinking.
B: I see. I don't need to show every tiny step. I see you used the word 
reduce. Does that mean the expression gets smaller?

A: Yes, usually smaller. You can imagine something shrinking. Now 
you can write out the substitutions step by step.
B: 

fact(3) 
3 * fact(2) 
3 * 2 * fact(1) 
3 * 2 * 1 * fact(0) 
3 * 2 * 1 * 1 
6 

A: Don't go directly to 6 in the end. There are three multiplications in 
3 * 2 * 1 * 1. Which one should we compute first?
B: 3 * 2 ?

A: No. Think about it this way. Why did we get 3 * 2 * 1 * 1? 
Because we wanted to compute fact(3), which is substituted to 3 * 
fact(2). But until we have the value of fact(2), we can't compute the 
multiplication 3 * fact(2).
B: This means we must compute 3 * fact(2) last?

A: Actually, if you put parentheses on multiplications in your 
substitutions, you will see the order clearly.
B: I just put every multiplication into parentheses. Indeed this is a lot 
more clear.

fact(3) 
(3 * fact(2)) 



(3 * (2 * fact(1))) 
(3 * (2 * (1 * fact(0)))) 
(3 * (2 * (1 * 1))) 

A: Right. Is that interesting?
B: Very interesting. I didn't know that parentheses can help so much. 
It is now all clear without much effort.

A: Remember this trick. Sometimes writing out every parentheses 
explicitly can help. Take a look at the evaluation process. Do you see 
any problems?
B: As I can see, the intermediate expressions can get very long.

A: Yes. Consider computing fact(1000). The intermediate steps will 
grow to 1000 in length, 1000 * 999 * 998 * ... * 3 * 2 * 1 * 1.
B: Does it take space to store this expression?

A: Yes. Nothing comes for free. Every number has to be stored 
somewhere, otherwise we would not know what to multiply.
B: That seems to be a big problem.

A: This way of writing fact function is not efficient regarding to 
storage space, but our purpose is just to show the anatomy of 
recursive functions, and fact serves as a very good first example. In 
practical programs, you don't want to write it this way.
B: I will remember fact, our first etude of recursive functions.

Another recursive function (fib) 

A: Now we take a look at another recursive function fib, where 
fib(n) will compute the nth fibonacci number.
B: Fibonacci number. I heard of it too, but...

A: Let me remind you. The first fibonacci number is 0, the second 
fibonacci number is 1, then every next fibonacci number is the sum of 
the previous two fibonacci numbers.
B: Can you give me an example?

A: Here is the fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, ... 

B: I see, in math language,

fib(0) is 0
fib(1) is 1
fib(2) = fib(0) + fib(1), which is 1
fib(3) = fib(1) + fib(2), which is 2
fib(4) = fib(2) + fib(3), which is 3



fib(5) is fib(3) + fib(4), which is 5
fib(6) is fib(4) + fib(5), which is 8
fib(7) is fib(5) + fib(6), which is 13
fib(8) is fib(6) + fib(7), which is 21
... ...

A: Yes. Using experience of fact, can you write a recursive function 
fib, which computes the nth fibonacci number?
B: Here it is.

function fib(n) 
{ 
  if (n == 0) 
  { 
    return 0; 
  } 
  else if (n == 1) 
  { 
    return 1; 
  } 
  else 
  { 
    return fib(n - 2) + fib(n - 1); 
  } 
} 

A: Perfect. Can you tell me how many base cases and recursive calls are 
there?
B: Two bases. Two recursive calls.

A: Nice picture. Why do we have two base cases?
B: I'm not sure. We are given the first two numbers. They are not 
computed but just given, so I used them as base cases.

A: Think about this. We need to compute the other numbers from the 
previous two numbers. The recursion will end up needing the values 
of fib(0) and fib(1), so you can't have just one base case.
B: Is there a systematic way in which I can know how many base cases 
to write?

A: The trick is to look at the recursive calls. See how the recursive 
call's input parameters are different from the function's parameters, 
and then figure out the values in which they end up.
B: I don't understand this.

A: It is a bit early to explain this in full. We will come up with a 
systematic way of thinking about recursion in the next class after we 



have more ways to write recursive function. For exercises of this class, 
you may just mimic fact and fib.
B: Okay.

A: Can you see that our way of writing the fib function has a big 
problem?
B: Does it also take a lot of storage space, like fact?

A: Not exactly the same problem. You can use fib(4) as an example, 
try drawing a graph showing the substitutions of the recursive calls. 
Draw an arrow connecting each recursive call to its substitution.
B: I can draw it like this. Because there are two recursive calls, the 
graph seems to be "branching" into a tree.

A: Good observation. Can you see how many times fib(2) is 
evaluated?
B: Twice. I have put two circles on them.

A: Right. Try expanding this graph into a graph for fib(5), and again 
see how many times fib(2) is evaluated.
B: Three times. The number of times we evaluate fib(2) seems to be 
growing with bigger fib(n).

A: Can you see the problem?
B: Yes. We are wasting time by computing some expressions 
repeatedly.

A: Have you noticed other such repeated computations?



B: Yes. fib(3), fib(1), fib(0), ...

A: Now that we see the examples of fib(4) and fib(5), try to figure 
out a general formula in which the number of repeated evaluation of 
fib(2) grows with n. For example, is it 2n, n2, or 2n ? If you have no 
clue, try extending our previous examples. Draw a graph of fib(6), 
fib(7), and so on.
B: (Write your answer and send it to the teacher.)

A: So fib is a very slow way of implementing fibonacci numbers, but 
it demonstrates this type of recursion very well.
B: What type of recursion? How is it different from fact?

A: Try redraw a picture for fact(3), in the style you just did for 
fib(4).
B: Here it is. I can see that the graph for fact(3) has no branching. It is 
more like a chain, not a tree.

A: Yes. The recursion of fact is called linear recursion, while the 
recursion of fib is called tree recursion, because it looks like a tree with 
branches.
B: I can see a downward growing tree in fib's recursion process.

A: Why is fib a tree recursion?
B: The branches come from fib(n - 2) + fib(n - 1), so the reason of 
tree recursion seems to be in the number of recursive calls.

A: Good observation. Whenever you see two recursive calls in the 
same recursive case, that means a tree recursion.
B: That is useful observation, because tree recursions may be costly.

A: Tree recursion may not always be costly, and it is often the only 
way to write certain programs.
B: Some teachers told me that recursion is slow and should be avoided 
or converted to other ways, for example loops.

A: I don't want to teach "what is a loop" for now, but it is a usual 
misunderstanding of recursion. Recursion is usually not any slower 
than loops. If you can't write a fast program with recursion, then you 
can't write a fast program with loops or any other way either.



But recursion is usually a lot simpler than other ways, so it is not 
something you should avoid. You just have to master the idea. It is 
fundamental to computer science, math and so many natural 
phenomenon in the universe.
B: What a terrible misunderstanding. I can see how much those 
people have missed. I will do my best to master recursion.

A: Good. We have more recursive functions in later classes. Actually 
almost every function we will write from now on will be recursive 
functions!
B: Wow!

A: Okay. That's all for today's class. Here are the exercises.
B: Thank you. Have a good night!
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