Ground-Up
Computer Science

(Draft. May 8, 2022)

Yin Wang
Preface

This is an introductory book to computer science. Based on experience of teaching computer science to complete beginners and professionals, it is for people who hope to understand computer science into a deeper level but have found no good place to start.

Many computer science introductory books have been written, but they are often not written with complete beginners in mind. Advanced books often have hidden assumptions about the readers' prior knowledge, so they are likely to get frustrated and give up. Friendlier books often don't go deep enough, so readers only get to the surface. It is very hard to balance between depth and progress.

This book is written after extensive practice of teaching real beginners. The contents and methods are repeated developed and refined to make sure they can practically grasp the important concepts without much struggle. Effort is needed but no effort is wasted. No prior experience of computer science or math is required. The hope is to guide people through the maze of computer science knowledge, achieving a clear and simple vision of its most important principles.

Yin Wang
yinwang0@gmail.com
May 6, 2022
Shanghai
1 Functions

A: Welcome.
B: It's good to be here!

A: How about learning some computer programming today?
B: That seems to be a hard topic. I'm afraid that I don't have any prior knowledge.

A: What is the result of 2×3?
B: 6.

A: How about $1 + 2 \times 3$?
B: 7.

A: So you have enough prior knowledge to start with.
B: I guess I'm surprised.

A: Now let's look deeper into 2×3 and $1 + 2 \times 3$ and see what they really are.
B: What's deeper about them?

A: 2×3 as you see here, is an expression.
B: What is an expression?

A: Expressions have multiple kinds. Here 2×3 is a kind of expression called arithmetic expression. We don't have to define the concept now. Some examples are good enough.
B: I guess $1 + 2 \times 3$ is also an arithmetic expression?

A: Yes. $1 + 2 \times 3$ is also an arithmetic expression. There are infinitely many arithmetic expressions.
B: I see.

A: An expression can have a value. For example, the value of 2×3 is 6. Notice that an expression and its value are two different things. 2×3 is an expression, not a value. Its value is 6.
B: So I can say the value of the expression $1 + 2 \times 3$ is 7?

A: Right. The process with which we compute the value of an expression is called evaluation. When we evaluate 2×3, we get the value 6.
B: If we evaluate $1 + 2 \times 3$, we get the value 7.
A: Yes. If you draw a picture, it may look like the above. Evaluation is a big topic.
B: That’s clear. I like pictures.

A: What you see in 2×3, the characters 2, *, and 3, are text. Text is like letters in this book. Everybody can see the text, but not many can see its essence. We will now look at the essence of 2×3. It is something like this:

B: This looks like a circuit.

A: Yes. It looks like a circuit, or a pipeline. We may call this a computation graph. You may think of the multiplication (\(\times\)) as a juicer with input and output pipes. If you put in orange and carrot, you get orange-carrot juice out.

B: This is really intuitive.

A: Compare the pictures of 2×3 and the juicer, you will see that they are very similar.

B: I can think of 2 as the orange, 3 as the carrot, * as the juicer, and this produces output 6, which is like the juice.
A: Right. The juicer runs, breaks up the orange and the carrot, mixes them into juice. The process of making juice is very similar to the process of evaluating expressions.

B: That seems really simple.

A: It is not always that simple. Juicers can be complex too, but indeed evaluation is very similar to making juice. The computer breaks up the numbers 2 and 3 into pieces, and then makes 6 out of those pieces.

B: I can see how similar they are. What are the pieces?

A: The pieces are usually called bits, but we don’t talk about bits in this course. Bits are low-level details. For now we don’t want low-level details to obscure high-level ideas. A rough idea is good enough.

B: Okay.

A: Can you draw a computation graph of the expression $1 + 2 \times 3$?

B: Let me try...

A: Good. You can think of this as two different machines connected by pipes. The result produced by the multiplication machine (6) will flow into the addition machine as input. Together with another input 1, the addition machine will produce the final result 7.

B: You used the term input. Can I say 7 is the output of the addition?

A: Yes. 7 is the output of the addition. You can also say that the output of the multiplication is 6.

B: I see. Every machine has one or more inputs and an output.

A: Look at the picture. Can you see how the order of multiplication and addition is determined by the computation graph of $1 + 2 \times 3$?

B: Yes. Because the output of the multiplication is an input for the addition, so we have to get the result of the multiplication first.

A: Right, otherwise the addition cannot proceed. Can you draw a computation graph of $(1 + 2) \times 3$?

B: Like this?
A: Correct. Have you noticed that we haven't any parentheses in the computational graphs?
B: Right. There are no parentheses, but we have parentheses in the text \((1 + 2) \times 3\). Why is that?

A: Because without parentheses we can't distinguish \((1 + 2) \times 3\) from \(1 + (2 \times 3)\). These have different orders of operation, so we have to use parentheses in the text. Why don't we need parentheses in the computation graph?
B: Because the graph itself can express the order of operations + and \(\times\).

A: Right. The order is specified by how we connect the pipes.
B: So it seems computation graphs are more expressive than text.

A: Yes. Computation graphs are the essence of text representations. \((1 + 2) \times 3\) and \(1 + (2 \times 3)\) are just text representations of computation graphs. From now on, when you look at expressions, try to think of the corresponding computation graphs. You don't have to draw every graph, but this vision will greatly help you understand expressions.
B: Okay. I'll keep that in mind.

Console

A: Now you have learned the simplest computer programs. The expressions \(2 \times 3\) and \(1 + 2 \times 3\) are programs too.
B: Can I run them on a computer?

A: Of course you can. Do you know that there is a programming language in every web browser?
B: I heard of it. It is called JavaScript.

A: Yes. We do experiments and exercises in the JavaScript language. It is a decent language for our purpose, but the knowledge you learn here does not depend on JavaScript. You can apply it to any language.
B: Great. What shall I do now?

(From now on, please use your computer and follow every step. Practice and play with it is the best way to learn.)

A: First, go to the menu of Chrome browser. Choose the menu item **View -> Developer -> JavaScript Console**. This will open up the JavaScript Console.
Then turn off the *Eager evaluation* option, because this feature may distract your thoughts.

![Image of console configuration with Eager evaluation option turned off](image)

Then you can type the above expressions 2×3 and $1 + 2 \times 3$ into the console. Try some other expressions if you like.

You may need to find ways to open it in other browsers or operating systems, but they are all similar.

B: Okay, I got it working.

A: It looks like a calculator, right?

B: Yes, but seems more advanced.

A: Right. It has the power of the JavaScript language in it, which is a lot more powerful than a calculator. We will make use of it soon.

B: Nice!

Variable, Function and Function Call

A: Here we go. Today you will learn three most important elements of programming languages: *variable*, *function*, and *function call*.

B: Only three?

A: Yes, but with these three basic elements, you can construct very interesting and powerful programs, as you will do in the exercises.

B: Are they elements of every programming language, or just JavaScript?

A: They are elements of most modern programming languages. You are not tied to any programming language in this course.

B: Good.

Variable
A: The following code creates a variable named \(x \). Enter it into the console and see what happens. Make sure you put a semicolon at the end to separate it from code that follows it.

\[
\text{var } x = 2 \times 3;
\]

B: Console gave me `undefined`. What does it mean? I was expecting something like 6.

A: `\text{var } x \Rightarrow 2 \times 3` will associate the name \(x \) with the value 6, as in the following picture.

![Variable association](image)

The action of creating such an association is not a value itself, so JavaScript gave you the special value `undefined`. It basically means "The action of defining the variable is done, but this expression \(\text{var } x \Rightarrow 2 \times 3 \) has no value."

B: Is `\text{var } x = 2 \times 3` another kind of expression?

A: Yes. `\text{var } x = 2 \times 3` is a new kind of expression. It is called a variable definition. It is not an arithmetic expression although it contains one, \(2 \times 3 \).

B: So it did create the variable \(x \) for me?

A: Yes. You can check the value of \(x \) by entering it into the console.

B: Console gave me 6, as expected. But how can I make use of the `undefined` value I got from `\text{var } x \Rightarrow 2 \times 3`?

A: You never use it. Don’t write `undefined` yourself. It is there just to satisfy the concept that "everything you enter is an expression".

B: That is a bit strange, but I’m okay with it.

A: Every language has something similar to `undefined`. It is usually called `void` in other languages. They are all of the same nature.

B: Good to know that.

A: This kind of expression with `undefined` value are also called statements. They make some action happen but they don’t have a value.

B: Okay.

A: Now that you have the variable \(x \), you can use it in any place where 6 can be used. You can make some examples and try them.

B: I tried \(1 + x \), \(3 \times x \), \(4 - x \), \(x \times x \), \(2 \times x - 1 \). The results are as expected.
A: Very good. Everything you just entered is an *expression*, and console gave you its *value*. Again, it is important to distinguish an expression from its value. \(2 \times 3\) is an expression, \(\text{var } x = 2 \times 3\) is also an expression.

B: This seems to be a good idea. Everything I enter into console is an expression, so I don’t have to think which one is an expression.

A: Is \(x\) an expression?
B: No, \(x\) is a variable.

A: It seems you forgot what you just said: "Everything I enter into console is an expression."
B: Oh, my bad.

A: Variables are also expressions, because you can enter them into the console, and you can get their values. \(x\) is an expression, so are \(1 + x\), \(3 \times x\), ...
B: I see.

A: Is \(6\) an expression?
B: No, it is a value.

A: Try enter \(6\) into console and see what happens.
B: It gave me \(6\).

A: The \(6\) you entered is an *expression*. The \(6\) that console gave you is a *value*. Those two \(6\)’s are different things.
B: It may take me a while to understand this.

A: For now, just repeat this to yourself: Whatever you enter into console is an expression, and whatever console gives you is a value. I may be cheating a bit for now, but this is good for you. Let us continue.
B: Okay. So \(2 \times 3\) is an expression, \(x\) is an expression, \(6\) is an expression, \(\text{var } x = 2 \times 3\) is also an expression.

A: Right. Expressions can be a variety of things. Now define another variable \(y\) and see what happens.

\[\text{var } y = x;\]
B: I got *undefined*.

A: Correct. That means the variable \(y\) is defined. Now check the value of variable \(y\).
B: I entered \(y\) into console and got \(6\).

A: Excellent. Now \(x\) and \(y\) have the same value, \(6\). It’s like this picture now.
B: So x and y points to the same 6?

A: Right. When you evaluate `var y = x`, JavaScript will evaluate x first and get the value 6. Then it associates y with the value 6. y is never associated with the variable x.

B: So x and y share the same value.

Function

A: Right. Let's look at what is a function. You can create a function for calculating the square of a number like this:

$$x \rightarrow x \times x$$

B: I entered this into console, but I got the same thing back.

A: This is as expected. A function is also an expression. Its value looks like itself.

B: I'm surprised. I thought a function is supposed to compute something.

A: Look at the function $x \rightarrow x \times x$. In the middle there is an arrow \rightarrow. It is used to separate the two parts of a function. The left hand side of \rightarrow is a parameter or input. The parameter is a name. The right hand side of \rightarrow is the function body, or just body. The function body is an expression which describes how the function computes the output.

B: That seems clear.

A: How many parts does the function $x \rightarrow x \times x$ have?

B: Three. The parameter x, the function body $x \times x$, and the arrow \rightarrow.

A: No, it has only two parts: the parameter x and the function body $x \times x$. The arrow \rightarrow is there just to separate the two parts. We say that the arrow is just syntax. It is not an essential part of the function. The purpose of \rightarrow is just to make clear which part is which, otherwise we would have something like $x \times x \times x$, which is confusing.

B: I see. Now I have a better understanding of what syntax means.

A: Other languages have functions too, and each function also has two parts, but other languages may not have the arrow \rightarrow. They may use other ways to separate the two parts.
A: The function by itself does nothing, because you haven’t given it any input. It is like a juicer without fruits. We now give the function an input and see what happens.

Try this

\[(x => x * x)(3)\]

B: The result is 9.

A: This way we have given the function \(x => x * x\) an input 3, just like you put a fruit into a juicer. And then it starts working.

B: Nice.

A: You see its syntax? First, we put the input 3 into a pair of parentheses, and then we append it to the function \(x => x * x\).

B: I noticed that there is a pair of parentheses around the function \((x => x * x)\), why is that?

A: If you omit the parentheses and just write \(x => x * x(3)\), JavaScript will think that you have given 3 to a function named x, which is not what we meant, so we put the function into parentheses to make this clear.

B: I see. Without the parentheses this will look confusing and ambiguous.

Function call

A: This construct \((x => x * x)(3)\) is a function call, or just call. So now you have learned all three basic constructs of programming languages: variable, function and function call.

B: That is so soon.

A: A function call has two parts. The first is the operator, the second is the operand. For example in this call \((x => x * x)(3)\), can you tell me which is the operator and which is the operand?

B: The operator is \(x => x * x\), and the operand is 3.

A: Correct.

B: So a function call has two parts?

A: Right. How many parts has a function?
B: Also two parts. The parameter and the function body.

A: It might be easy to confuse functions with function calls. They are two different kinds of constructs. Make sure you can distinguish them.

B: That's easy. A function won't do anything without input. If we give it input, it is a function call.

Functions with names

A: Very good. Have you noticed that the function \(x \mapsto x \times x \) doesn't have a name?

B: Isn't its name \(x \)?

A: No. \(x \) is the name of its parameter, not the name of the function itself. The function doesn't have a name.

B: Indeed.

A: Functions don’t really have names, but it may be inconvenient if we use them without names, because then we have to copy the whole function every time we use them.

B: Right. That will make the code very complicated.

A: Now we find a way to give functions names. Actually you can do it with what you have just learned.

B: Let me see. Can I use variables to name functions?

A: Good observation. Try that.

B: Something like this.

```javascript
var square = x => x * x;
```

A: That's right. Try it in the console.

B: `undefined`.

A: The situation is now like this picture. The variable \(\text{square} \) is associated with the function \(x \mapsto x \times x \).

B: It's just like the picture with `var x = 2 * 3`, except that this time the value is a function.

A: Right. Now enter the name `square` into console.

B: It shows me its value \(x \mapsto x \times x \).
A: This variable definition `var square = x => x * x` is not that different from `var x = 2 * 3`. Both `2 * 3` and `x => x * x` have values. We just use variables `x` and `square` to refer to their values.
B: Got it. There is nothing new in this one.

A: Can you give input `3` to the function referred to by the variable `square`? For brevity, we can also say "the function `square`" to mean the same thing.
B: `(square)(3)`.

A: Try it.
B: I got 9.

A: Correct. Here the name `square` has just one part, so there is no confusion in syntax. You don't need to put parentheses around the variable `square`. You can just say `square(3)` instead.
B: I see. `square(3)`.

A: What is the operator and operand in `square(3)`?
B: The operator is `square`. The operand is `3`.

A: Good. Let's take a look at what happens in small steps when you enter `square(3)` into console. The operator `square` will be evaluated and the value is `x => x * x`. The operand `3` is also evaluated and the value is 3. So essentially `square(3)` is `(x => x * x)(3)`. And then we get 9 from `(x => x * x)(3)`.

B: I see. That is the same process as other variables. We can use the name `square` wherever we need the function `x => x * x`. We just substitute its value in there.

A: You can also give the function another name, for example

`var sq = square;`

B: This is much like `var y = x` we have done previously, so I think `sq` will be pointing to the same function as `square`. Like this picture.
A: Try \(sq(3) \)?

B: That's the same thing as \((x => x * x)(3) \), so I get 9.

The parameter's scope

A: Good. There is nothing new here. Now type \(x \) into the console, and let me know its value.

B: Hmm... it is still 6.

A: Why hasn't the value changed to 3, since you entered \((x => x * x)(3) \) before, and 3 gets into \(x \)?

B: I guess this 6 is from our first variable definition \(\text{var } x = 2 * 3 \)?

A: Right. This means that function calls will not change the variables outside of the function, even if they have same names.

B: That is interesting. Why is that?

A: The function's parameter name is like a label for the input pipe. It is only visible inside the function body. It is not the same thing as the variable defined outside of the function. So you won't be able to change outside variables accidentally when calling a function.

B: The picture is very clear. That sounds a reasonable design.

Substitution

A: Now we take a closer look at how function calls are evaluated.

B: Okay.

A: When \((x => x * x)(3) \) is evaluated, we first replace every \(x \) inside the body \(x * x \) with 3, and we get \(3 * 3 \). This process is called substitution.

B: From the substitution we get \(3 * 3 \), and not \(x => 3 * 3 \)?
A: Yes. The function call's value is the value of the function body after the substitution. If we get $x \Rightarrow 3 \times 3$, then next step we won't get 9. $x \Rightarrow 3 \times 3$ is another function, not a number.

B: This sounds reasonable. By definition, the function body describes how to compute the output value.

A: That is a very good understanding.
B: I'm happy.

A: Now, do a substitution of $(x \Rightarrow 2 \times (x + 3))(5)$ and show me the result.
B: (Write your own result with pen and paper, without using console, and send it to the teacher.)

A: Substitution as described here is a way of thinking about function calls. It will help you understand function calls, but this may not be exactly how the machine evaluates the function call. For performance reasons the machine may be more clever about the evaluation process.
B: Okay. I will try to use it when I do exercises.

A: The first part of this class is good for now. Have a hour of rest and come back later.
B: Thank you!

Function of more than one parameter

A: We haven’t learned all about functions yet.
B: What is more about them?

A: A function can have more than one input.
B: I was about to ask about that.

A: Here is a function with two parameters. The syntax is to separate the parameters with a comma, and put them into parentheses.

$$(x, \ y) \Rightarrow x + 2 \times y$$

B: That is clear.

A: Can you figure out how we can call this function, with two inputs 1 and 3?
B: $((x, \ y) \Rightarrow x + 2 \times y)(1, \ 3)$.

A: Correct. Try it in the console.
B: I got 7. After a substitution, the body becomes $1 + 2 \times 3$. The value is 7.
A: Nice. This is a good use of substitution.
B: It seems to be a very useful tool.

Function as output from another function

A: Functions are values, just like numbers are values. You have already defined variables whose values are functions, for example `var square = x => x * x`. Now we will see that functions can also be the output of another function.
B: What does that mean?

A: Try this function:

```
x => (y => x + y)
```

Can you see what it means?
B: I'm a bit confused. It has two arrows in it.

A: Don't be afraid. There is nothing in this that you haven't learned already. A function has just two parts, parameter and body. What are parameter and body of the first arrow?
B: The parameter is `x`, the body is `y => x + y`.

A: Correct.
B: So this function's output is a function `y => x + y`?

A: Right. This is what I mean by "function as output".
B: I see. What is the use of this function `x => (y => x + y)`?

A: Give this function an input 2, and see what you get.
B: I entered `(x => (y => x + y))(2)` and got `y => x + y`.

A: This proves that the function will return a function, right?
B: Yes, but I still don't see how this is useful.

A: Actually `y => x + y` is not the complete output. The console is hiding something from you.
B: The console is hiding things?

A: Try a substitution on `(x => (y => x + y))(2)`.
B: The function body is `y => x + y`. I replace the `x` inside it with 2, and I get `y => 2 + y`.

A: Correct. But the console gave you `y => x + y` as the value of `(x => (y => x + y))(2)`. The actual output should be `y => 2 + y`. This is what I mean that console is hiding things. The console is hiding the information that it knows that "x is 2 inside y => x + y".
B: Interesting. Why does it do that?
A: It is a bit early to explain this here. Try to give \(y \Rightarrow 2 + y \) input 3, and see what happens.
B: I entered \((y \Rightarrow 2 + y)(3)\), and got 5.

A: Now try \((x \Rightarrow (y \Rightarrow x + y))(2)(3)\).
B: I got 5 too.

A: Does this mean the function returned from \((x \Rightarrow (y \Rightarrow x + y))(2)\) behaves like \(y \Rightarrow 2 + y\)?
B: Yes.

A: What does this mean to you?
B: I think it proved that what I got from \((x \Rightarrow (y \Rightarrow x + y))(2)\) is \(y \Rightarrow 2 + y\) and not \(y \Rightarrow x + y\).

A: Correct. It might be interesting to see what you can get from \((y \Rightarrow x + y)(3)\).
B: I entered it and got 9. That is strange.

A: Did you notice that you have a variable named \(x\) outside of the function?
B: I see. I have a variable \(x\) whose value is 6. \((y \Rightarrow x + y)(3)\) is substituted into \(6 + 3\), thus result 9.

A: Exactly. This example shows you that you can create functions inside another function. The output of \((x \Rightarrow (y \Rightarrow x + y))(2)\) is a new function.
B: Nice. I haven’t seen functions that creates functions before.

A: Functions that can return functions as output, is called high-order functions.
B: I have heard of the term high-order functions before, but I didn’t expect to learn this at such early stage.

A: It is possible to understand this, and I believe this is the best time to understand it. Many of my students succeeded in learning functions this way, and you will too.
B: Thank you.

A: \((x \Rightarrow (y \Rightarrow x + y))(2)(3)\) is hard to read. You may use variables to break it up.
B: I tried

```javascript
var f = x => (y => x + y);
var g = f(2);
g(3)
```

I got 5 in the end. The same result.
Function as input for another function

A: That is good. You have seen functions used as output from another function. Now I will show you that functions can also be used as input to another function.

B: Output then input. It seems that we will cover every case.

A: That is right. Look at this function `apply`:

```javascript
var apply = (f, x) => f(x);
```

The first parameter `f` here is a function. We usually use the parameter names `f`, `g`, `h` etc for functions.

B: I see. What will this `apply` function do?

A: The function `apply` takes a function `f` and input `x`, then passes `x` to `f`. It just calls the function `f` with input `x`.

B: It doesn't seem to be very useful.

A: It may not be very useful, but it is a very simple example. Now try this:

```javascript
apply(x => x * x, 3)
```

B: I got 9.

A: Can you show me what is going on by using substitution?

B: Yes. In `apply`'s body `f(x)`, replace `f` with `x => x * x` and replace `x` with 3, I get `(x => x * x)(3)`, whose value is 9.

A: Excellent. Try this also:

```javascript
var h = x => x * x;
apply(h, 3)
```

B: The result is the same, 9.

Function as input and output

A: Last example. This time we make a function which takes two functions as input, and produces a function as output.

B: A function whose inputs and output are all functions?

A: Right. Here is an example. Its name is `compose`.

```javascript
var compose = (f, g) => x => f(g(x));
```

B: This one is harder to read.
A: When you see more than one arrows, focus on the first arrow and mentally put everything else after it into parentheses, so this is equivalent to

\[
\text{var compose} = (f, g) => (x => f(g(x)));
\]

But using fewer parentheses may make it easier to read when things become complex.

B: I see, but I don’t understand what it does.

A: A computation graph may help here. The `compose` function takes two inputs `f` and `g`, both are functions, and produces a function `x => f(g(x))`.

B: It gets better now, but what is the purpose of this?

A: Think about juicers and other machines. You give the `compose` function two machines and it connects them with pipes. The output of the first machine becomes the input of the second machine. The output of `compose` is the assembly of the two machines.

B: I see. It creates a new function by connecting two functions.

A: Try use the `compose` function with this example:

\[
\text{compose}(x => x * x, x => x + 1)(3)
\]

B: I got 16.

A: Can you see why you got 16?

B: Here `compose`’s parameter `f` is `x => x * x` and `g` is `x => x + 1`, so substitution gives me `(x => x * x)((x => x + 1)(3))`. One more substitution, I get `(x => x * x)(3 + 1)` and then `(3 + 1) * (3 + 1)`, and so on, and the result is 16.

A: Excellent. Now can you simplify this expression `\text{compose}(x => x * x, x => x + 1)`, rewrite it into a simple function of the form `x => ...` without using `\text{compose}`?

B: (Write your solution, and send it to the teacher)

Parameter names don’t matter
A: Let’s look at another thing. If you give the following two functions the same input, do they always produce the same output?

\[x \Rightarrow x \ast x \]
\[y \Rightarrow y \ast y \]

B: Those two functions both compute the square of the input, so of course they always produce the same output, no matter what the parameter name is.

A: Excellent. It seems that the parameter names don’t matter. Can we change it to any name?
B: Yes, I think so.

A: Let’s see some other examples. Is \((x, y) \Rightarrow x + 2 \ast y\) equivalent to \((u, v) \Rightarrow u + 2 \ast v\)?
B: Yes.

A: Is \((x, y) \Rightarrow x + 2 \ast y\) equivalent to \((y, x) \Rightarrow y + 2 \ast x\)?
B: Yes.

A: Is \((x, y) \Rightarrow x + 2 \ast y\) equivalent to \((y, x) \Rightarrow x + 2 \ast y\)?
B: No. Those are different.

A: Is \(x \Rightarrow y \Rightarrow x + y\) equivalent to \(x \Rightarrow x \Rightarrow x + x\)?
B: \((\text{Think about your answer and discuss with your teacher.})\)

Equivalence of \(x \Rightarrow e(x)\) and \(e\)

A: We have seen the first kind of equivalence, where functions remain the same when only parameter names are changed.
B: Do we have other kinds of equivalence?

A: Yes. We have another equivalence relation. If \(e\) is any expression, then \(x \Rightarrow e(x)\) is equivalent to \(e\).
B: That surprised me. Why is that?

A: Let’s consider a simple example. Let \(e\) be the function \(y \Rightarrow y \ast y\) here, then we have \(x \Rightarrow (y \Rightarrow y \ast y)(x)\) is equivalent to \(y \Rightarrow y \ast y\).
B: Are they really equivalent?

A: You may give them some inputs and see if they give you the same outputs.
B: I tried some numbers, 2, 3, 7, … Indeed they gave me the same outputs 4, 9, 49, … So they are both computing the square of the input.

A: Yes. Now you may draw a computation graph. It may help you understand why they are equivalent.
B: Here is my computation graph.

I can see that the input of the \(x \mapsto (y \mapsto y \cdot y)(x) \) function is directly passed to \(y \mapsto y \cdot y \) and the output of \((y \mapsto y \cdot y)(x) \) is the output of \(x \mapsto (y \mapsto y \cdot y)(x) \). So they always have the same inputs and outputs.

A: Right. You may consider this as just juicers with extension pipes attached. It's still the same juicer.

B: Now it's easy to see.

A: The \(e \) in \(x \mapsto e(x) \) can be any expression we have learned so far. It can be functions, variables, or even calls.

B: Is it very useful?

A: I can't say "very", but it is useful sometimes. It may appear when you need to simplify expressions containing functions. You will see examples in the exercises.

B: Great!

Alternative syntax of functions

A: We are almost done with this lesson. Before I give you exercises, I need to let you know an alternative syntax for functions. It is provided by JavaScript and many other languages.

There is a simpler way to write named functions.

```javascript
function f(x)
{
  return ...;
}
```

This is equivalent to

```javascript
var f = x => ...;
```
B: Let me try to see the relationship between the two. I see the function names, parameters and body correspondingly, only the syntax is different.

A: Right. Also please notice that inside the function body's curly braces, you may have more than one statements. You may introduce new local variables inside the braces. For example

```javascript
function f(x)
{
    var y = x * x;
    return y + 1;
}
```

This equivalent to

```javascript
var f = x =>
{
    var y = x * x;
    return y + 1;
}
```

B: I didn’t know that I can write curly braces in the "arrow notation" too.

A: Yes you can, although it's not often written that way. If the function has a name and has multiple statements in the body, it is usually written in "function notation".

Another thing about this "function notation" is that you must write the keyword `return` for the output, otherwise you will get an unexpected `undefined` value, which means you haven't returned anything.

B: That seems a little different from the "arrow notation".

A: Yes, but only a few nonessential differences. You will see both kinds of syntax in the exercises.

B: It seems there is a lot in the exercises.

A: Yes. Don't be afraid or confused. You only need to use things you just learned. Please don't search online for solutions. Think independently. This will deepen your understanding.

B: Okay.

A: Do the exercises one by one and send the solution to me as soon as you finish each one. Don't wait until all is done. If you are stuck for longer than an hour, please let me know. I may give you hints.

B: Thank you!

A: Here are the exercises. (Exercises omitted for the sample)