Static Analysis of Dynamically
Typed Languages made Easy

Yin Wang
School of Informatics and Computing

Indiana Universit

Overview

Work done as two internships at Google (2009
summer and 2010 summer)

Motivation:

The Grok Project: static analysis of all code at
Google (C++, Java, JavaScript, Python, Sawzall,
Protobuf ...)

Initial goal was not ambitious:
Implement “IDE-like” code-browsing
Turns out to be hard for Python

Achieved Goals

Build high-accuracy semantic indexes

Detect and report semantic bugs
type errors
missing return statement
unreachable code

Demo Time

http://dl.dropbox.com/u/392085/presentation.py.html
http://dl.dropbox.com/u/392085/presentation.py.html

Problems Faced by Static Analysis of
Dynamically Typed Languages

1. Problems with Dynamic Typing

Dynamic typing makes it
hard to resolve some
names

Mostly happen in def h(x):
polymorphic functions return X.z

1. Problems with Dynamic Typing

Dynamic typing makes it
hard to resolve some
names

Mostly happen in def h(x):
polymorphic functions return X.z

Q: Where is 'z’ defined?
A: ... wherever we defined 'x’

1. Problems with Dynamic Typing

Dynamic typing makes it
hard to resolve some
names

Q: Whatis 'x'?
A: Uhh...

Mostly happen in def h(
polymorphic functions return X.z

Q: Where is 'z’ defined?
A: ... wherever we defined 'x’

1. Problems with Dynamic Typing

Dynamic typing makes it
hard to resolve some
names

Q: Whatis 'x'?
A: Uhh...

Mostly happen in def h(
polymorphic functions return X.z

Solution:

* use astatictype system

e use inter-procedural Q: Where is 'z’ defined?
analysis to infer types A: ... wherever we defined X’

Static Type System for Python

Mostly a usual type system, with two extras: union and dict

primitive types class types
int, str, float, bool ClassA, ClassB
tuple types union types
(int,float), (A, B,) fint|str}, {A|B|C}
list types recursive types
[int], [bool], [(int,bool)] #1(int, 1), #2(int -> 2)
dict types function types
fint => str}, {A => B} int -> bool, A->B

2. Problems with Control-Flow Graph

CFGs are tricky to build for high-
order programs
def g(f,x):
Attempts to build CFGs have led to return f(x)
complications and limitations in
control-flow analysis def h1(x):
return x+1

Shivers 1988, 1991
build CFG after CPS def h2(X):

Might & Shivers 2006,2007 return xX+2
solve problems introduced by CFG

Vardoulakis & Shivers 2010,2011
solve problems introduced by CPS

2. Problems with Control-Flow Gr

CFGs are tricky to build for high-
order programs

Attempts to build CFGs have led to
complications and limitations in
control-flow analysis

Shivers 1988, 1991
build CFG after CPS

Might & Shivers 2006,2007
solve problems introduced by CFG

Vardoulakis & Shivers 2010,2011
solve problems introduced by CPS

Where is the
CFG target?

def g(f,x):
return f(x)

def h1(x):
return x+1

def h2(x):
return x+2

2. Problems with Control-Flow Gr

CFGs are tricky to build for high-
order programs

Solution:

* Don't CPS the input program

« Don't try constructing the CFG
Use direct-style, recursive
abstract interpreter

Attempts t¢
complicatic
control-flo

Shivers 1c
build CFG after CPS

Might & Shivers 2006,2007
solve problems introduced by CFG

Vardoulakis & Shivers 2010,2011
solve problems introduced by CPS

Where is the
CFG target?

def g(f,x):
return f(x)

def h1(x):
return x+1

def h2(x):
return x+2

3. Problems with Dynamic Field Creation/
Deletion

class A:
X=1
obj = A()
obj.y =3
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

class A:
X=1
obj =A()
obj.y =3
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

class A:
X=1
obj =A()
obj.y =3
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

S A = create “abstract objects” at
X=1 constructor calls

obj = A()

obj.y =3
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

S A = create “abstract objects” at
X=1 constructor calls

obj = A()

obj.y =3
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

S A = create “abstract objects” at
X=1 constructor calls

Ob_] = A() = Actually change the

abstract objects when fields

Obe =3 are created
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

S A = create “abstract objects” at
X=1 constructor calls

Ob_] = A() = Actually change the

abstract objects when fields

Obe =3 are created
print obj.x, obj.y

3. Problems with Dynamic Field Creation/
Deletion

Solution:

S A = create “abstract objects” at
X=1 constructor calls

Ob_] = A() = Actually change the

abstract objects when fields

Obe =3 are created
print obj.x, obj.y

Classes are not affect by the
change

4. Problems with More Powerful
Dynamic Features

direct operations on

__dict__ (e.qg. setattr,
delattr, ...)

dynamic object
reparenting
import hacks
eval

4. Problems with More Powerful
Dynamic Features

direct operations on

__dict__ (e.g. setattr,
delattr, ...)

dynamic object
reparenting

import hacks Solution: »
eval “Python Style Guide

Overall Structure of Analysis

AST node Type Env
(Expr) (EI’IV)

Abstract
Interpreter (Al)

|- (Expr,Env,Stk) -> Type

Overall Structure of Analysis

AST node Type Env
(Expr) (EI’IV)

direct-style
recursive

Abstract
Interpreter (Al)

|- (Expr,Env,Stk) -> Type

Overall Structure of Analysis

AST node Type Env
(Expr) (Env)

» direct-style
* recursive

Abstract Global Information

Table (GIT
Interpreter (Al) ©r ::?ﬂ,E()

|- (Expr,Env, Stk) -> Type f@12 ::int->bool,
z@23 :‘unbound variable’

Overall Structure of Analysis

direct-style (not CPSed)
no CFG generated

keep it “clean” (don't
record anything on it)

AST node Type Env
(Expr) (Env)

» direct-style
* recursive

Abstract Global Information
Table (GIT)
{X@1 :int,

Interpreter (Al)
|- (Expr,Env, Stk) -> Type f@12 ::int->bool,
z@23 :‘unbound variable’

Overall Structure of Analysis

direct-style (not CPSed)
no CFG generated

keep it “clean” (don't
record anything on it)

AST node Type Env
(Expr) (Env)

» direct-style
* recursive

Abstract Global Information
Table (GIT)
{X@1 :int,

loop detection = [
(using stack) l‘
\

Interpreter (Al)
|- (Expr,Env, Stk) -> Type f@12 ::int->bool,
z@23 :‘unbound variable’

Actual Code of Main Interpreter

Module):

infer (exp.body, env, stk)

IS (exp, Name):

b = lookup(exp.id, env)
if (b <> None):
putInfo(exp, b)

.defaulcs:
nv, stk)
nd (dr)

stack of nodes on
path (recursion
detection)

Actual Code of Main

type
environment

input
expression

Module):

infer (exp.body, env, stk)

IS (exp, Name):
b = lookup(exp.id, env)
if (b <> None):

putInfo(exp, b)
recurn b

.....

IS (exp, Lambda):
¢ = Closure(exp, env)

for d in exp.args.defaults:
dt = infer(d, env, stk)

stack of nodes on
path (recursion
detection)

Actual Code of Main

type
environment

input
expression

lookup
variable’s

type

exp, | env, [stk):

if IS(exp, Module): reocord type to
recurn infer (exp.body, env, stk) (EFT

f IS(exp, Name):

b = lookup(exp.id,
if (b <> None):
putInfo(exp, b)
recurn b

return a

f - y
iSvValL <

-yl

stack of nodes on
path (recursion
detection)

Actual Code of Main

type
environment

input
expression

lookup
variable’s

type

r({exp, env, (stk):

if IS(exp, Module): reocord type to
recurn infer (exp.body, env, stk) (EFT

f IS(exp, Name):

b = lookup(exp.id, env)
if (b <> None):

putInfo(exp, b)

return a

I &y y
iSvValL <

f IS(exp, Lambda):
¢ = Closure(exp, env)

r d in exp.args.defaultcs: record error

dt = infer(d, env, stk)
c.defaults.append(dr) tO GIT

stack of nodes on
path (recursion
detection)

Actual Code of Main

type
environment

input
expression

lookup
variable’s

type

r({exp, env, (stk):

if IS(exp, Module): reocord type to
recurn infer (exp.body, env, stk) (EFT

f IS(exp, Name):

b = lookup(exp.id, env)

if (b <> None):

putInfo(exp, b)
turn b

make closures try: R — return a
for functions Serpia iz

invoke
function
(closure) c.default

record error
to GIT

“"Multiple-Worlds Model”

“"Multiple-Worlds Model”

HardQuestion() ?

split “world”

“"Multiple-Worlds Model”

HardQuestion() ?

split “world”

“"Multiple-Worlds Model”

HardQuestion() ?

split “world”

merge “world”

“"Multiple-Worlds Model”

HardQuestion() ?

split “world”

merge “world”

x:{int|bool}
y : {str|float}

“"Multiple-Worlds Model”

HardQuestion() ?

split “world”

Clone the state for
“backtracing”

merge “world”

x:{int|bool}
y : {str|float}

Recursion Detection (1)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

fact(s)

Recursion Detection (1)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

fact(s)

Assumption: the same call
site with the same argument
types always produces the
same output type (or
nontermination)

Recursion Detection (1)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

return 1 return n * fact(n-1)

Assumption: the same call
site with the same argument
types always produces the
same output type (or
nontermination)

Recursion Detection (1)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

return 1 return n * fact(n-1)

Assumption: the same call
site with the same argument
types always produces the
same output type (or
nontermination)

fact@7 may return int

Recursion Detection (1)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

return 1 return n * fact(n-1)

Assumption: the same call <fact@s, int>
site with the same argument
types always produces the
same output type (or
nontermination)

fact@7 may return int

Recursion Detection (1)

return 1
else:
return n * fact(n-1)

Assumption: the same call
site with the same argument
types always produces the
same output type (or
nontermination)

return 1

fact@7 may return int

<fact@y, int> ><
v

not on stack

n=07? not a loop

return n * fact(n-1)

< fact@s, int>

Recursion Detection (2)

def fact(n):
if (n ==0):
return 1
else:
return n * fact(n-1)

fact(s)

Recursion Detection (2)

. <fact@s, int>
def fact(n): y¥ <fact@y, int>

if (n ==0):
return 1

else: .
returnn * faét(n-l)

n=07?

return 1 return n * fact(n-1)

fact(s)

Recursion Detection (2)

. <fact@s, int>
def fact(n): y¥ <fact@y, int>

if (n ==0):
return 1

else: .
returnn * faét(n-l)

n=07?

return 1 return n * fact(n-1)

fact(s)

fact@s5 may return int

Recursion Detection (2)

. <fact@s, int>
def fact(n): y¥ <fact@y, int>

if (n ==0):
return 1

else: .
returnn * faét(n-l)

n=07?

return 1 return n * fact(n-1)

fact(s)

< fact@s, int>
fact@s5 may return int

Recursion Detection (2)

. <fact@s, int>
def fact(n): y¥ <fact@y, int>

if (n ==0): on stack
—A? I
return 1 NnN=0 :- loop detected!

else: -
return n * fact(n-1)

return 1 return n * fact(n-1)

fact(s)

< fact@s, int>
fact@s5 may return int

Recursion Detection (2)

. <fact@s, int>
def fact(n): vy <fact@y, int>

if (n ==0): on stack
return 1 . nN=07? loop detected!

else: .
returnn * faét(n-l)

return
‘unknown type’

return 1 return n * fact(n-1)

fact(s)

< fact@s, int>
fact@s5 may return int

Recursion Detection (2)

< fact@s, int>

def fact(n):
if (N == 0):
return 1
else: .
returnn * faét(n-l)

return 1

fact(s)

fact@s5 may return int

07?

< fact@y, int>

on stack
loop detected!

return
‘unknown type’

return n * fact(n-1)

return < fact@s, int>
‘unknown type’ and

unify with int

(possible false-

negative here)

Recursion Detection (2)

def fact(n):
if (N == 0):
return 1
else: .
returnn * faét(n-l)

fact(s)

return 1

fact@s5 may return int

< fact@s, int>
< fact@y, int>

on stack
o7 loop detected!

return
‘unknown type’

return n * fact(n-1)

return < fact@s, int>
‘unknown type’ and

unify with int

(possible false-

negative here)

Call fact@s5 returns ‘int’ finally

Record ‘fact@s :: int’

Recursion Detection (2)

def fact(n):
if (N == 0):
return 1
else: .
returnn * faét(n-l)

fact(s)

Call fact@7 returns ‘int’ finally
Record ‘fact@ua:: int -> int’

return 1

fact@s5 may return int

< fact@s, int>
< fact@y, int>

on stack
o7 loop detected!

return
‘unknown type’

return n * fact(n-1)

return < fact@s, int>
‘unknown type’ and

unify with int

(possible false-

negative here)

Call fact@s5 returns ‘int’ finally

Record ‘fact@s :: int’

Correctness of Recursion Detection

fact(n-1)

Every program is a dynamic circuit

Every call site is a ‘conjuction point' in
the dynamic circuit, because it
connects to an instance of a function

body

The same call site with the same
arguments is a unique joint point in the
process graph, with a deterministic
‘future’

If the same <call site, argument type>
combination has appear before in the
path, there must be a loop

Correctness of Recursion Detection

*fact(n-1)

Every program is a dynamic circuit

Every call site is a ‘conjuction point' in
the dynamic circuit, because it
connects to an instance of a function

body

The same call site with the same
arguments is a unique joint point in the
process graph, with a deterministic
‘future’

If the same <call site, argument type>
combination has appear before in the
path, there must be a loop

Correctness of Recursion Detection

<fact@s, int>

*fact(n-1)

Every program is a dynamic circuit

Every call site is a ‘conjuction point' in
the dynamic circuit, because it
connects to an instance of a function

body

The same call site with the same
arguments is a unique joint point in the
process graph, with a deterministic
‘future’

If the same <call site, argument type>
combination has appear before in the
path, there must be a loop

Correctness of Recursion Detection

<fact@s, int>

*fact(n-1)

Every program is a dynamic circuit

Every call site is a ‘conjuction point' in
the dynamic circuit, because it
connects to an instance of a function

body

The same call site with the same
arguments is a unique joint point in the
process graph, with a deterministic
‘future’

If the same <call site, argument type>
combination has appear before in the
path, there must be a loop

Related Work

Similar to “control-flow analyses”, but much simpler
No need to build CFG (as in original CFAs)
No need to maintain stack manually (as in CFA2)

“"CFG" here is dynamic and implicit (maybe impossible to build
statically)

Doesn’t record any information on the AST
Recursive style leads to full utilization of host language

Much simpler than type inferencer of JSCompiler (Google’s type
inference and static checker for JavaScript)

JSCompiler also needs type annotations, iirc

Very similar to NCI (Near Concrete Interpretation)
But using another way to detect recursion

http://www.ccs.neu.edu/home/shivers/citations.html
http://www.ccs.neu.edu/home/shivers/citations.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.9922
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.9922

Connections to "Deeper” Theories

In essence, the analysis is doing a simple version of
"supercompilation”

Similar to technique used by automatic theorem
provers such as ACL2

Does not track as much information (only type
information is tracked)

Termination technique is more efficient (no expensive
“homeomorphic embedding” checks)

.. but may not be as accurate

may cause false-negatives!

http://dl.acm.org/citation.cfm?id=5957
http://dl.acm.org/citation.cfm?id=5957
http://www.cs.utexas.edu/~moore/acl2
http://www.cs.utexas.edu/~moore/acl2

Limitations

Doesn’t process bytecode. Needs all source code to
be available (except for built-ins which was hard-
coded or mocked)

Does not track value/range of numbers

Does not track heap storage (assume side-effects on
heap won't affect typing)

May produce false-negatives at recursions

Worst-case complexity is high

More approximations can be used to improve efficiency
(at the cost of reducing accuracy)

Error reports are not user-friendly for deep bugs

Applicability

A general way of type inference/static
analysis

Can be applied to any programming
language

More useful for dynamic languages because

type annotations of static languages make it
a lot easier and more modular

There are always trade-offs though

Availability

2009 version “Jython Indexer” (in Java, open-source)
modular analysis with unification (similar to HM system)
can’t resolve some names
fast
currently used by Google for building code index
open-sourced to Jython

2010 version “PySonar” (in Java, not open-source)
inter-procedural analysis
can resolve most names
can detect deeper semantic bugs
slow

2011 version “"mini-pysonar” (in Python, open-source)
available from GitHub
contains only the essential parts for illustrating the idea

https://jython.svn.sourceforge.net/svnroot/jython/trunk/jython/src/org/python/indexer/
https://jython.svn.sourceforge.net/svnroot/jython/trunk/jython/src/org/python/indexer/
https://github.com/yinwang0/mini-pysonar
https://github.com/yinwang0/mini-pysonar

Possible Future Work

Apply the technique to other (hopefully
simpler) languages

Publish a paper about the general
method

Derive other ideas from the same
Intuition

Thank you!

